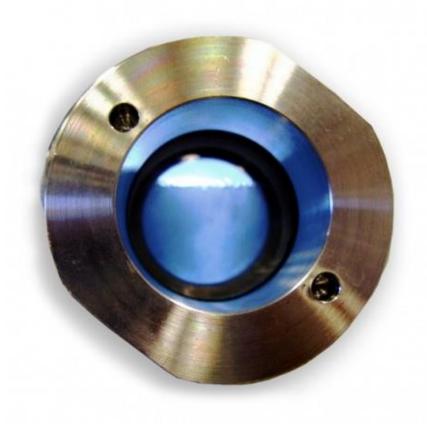
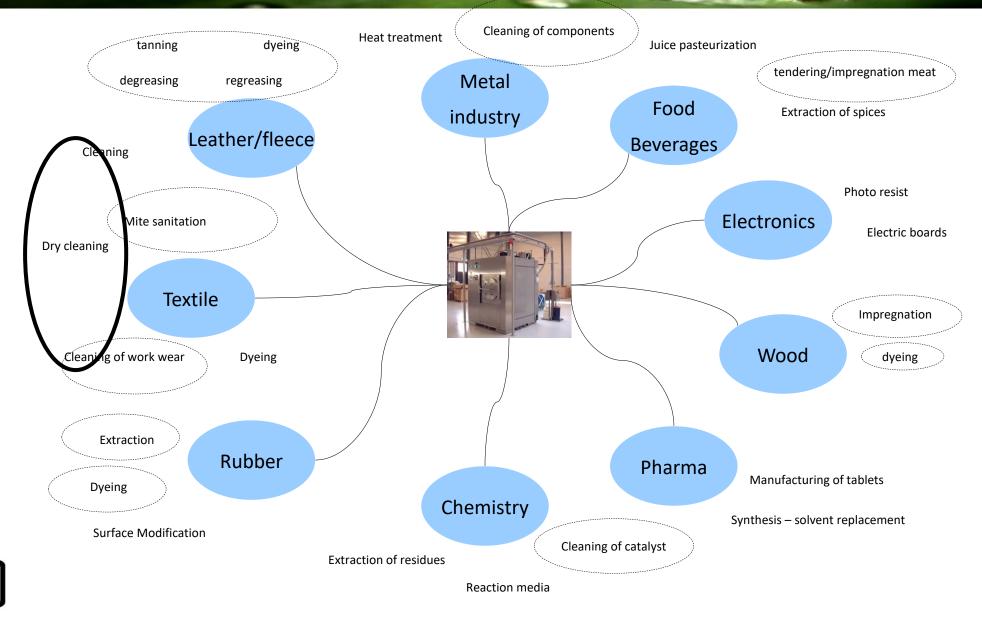
About SiOx Machines



SiOx Machines AB:

- Manufacturer of CO₂ machines for textile cleaning and industrial markets
- Design and engineering developed by Electrolux Professional / AGA
- 25 years in-house experience in CO₂ processes and machine design
- SiOx offers machines, technical services, process development
- Office and tech center in Stockholm and Ljungby, Sweden

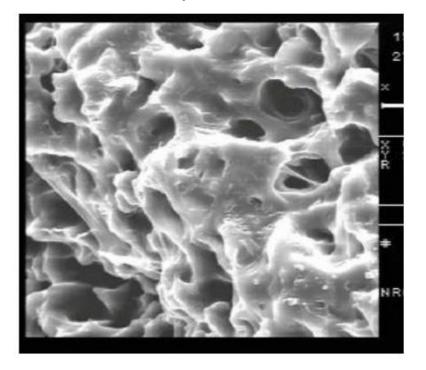
Why use liquid CO₂?



General:


- Solvent comparable with acetone
- Low surface tension reaches even the smallest pores
- Non-toxic, non-explosive
- Easy to recover / recycle
- No high temperatures
- No or litte waste
- No drying necessary low energy consumption

Liquid/supercritical CO₂ applications – an overview



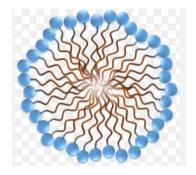
CO₂ applications

Leather tanning

Microporous membranes

Solubility in liquid CO₂

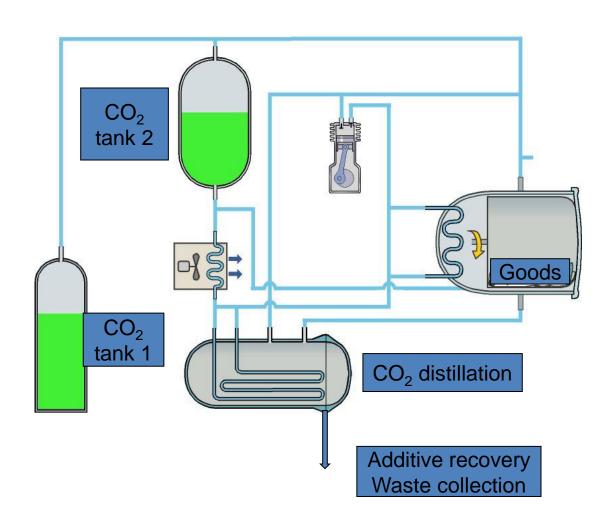
SAID-GALIYEV et al.


Table 3. Solubility of organic compounds in liquid carbon dioxide [21]

Compound	Solubility, wt %	Compound	Solubility, wt %
	Alcohols Ethyl benzoate Unlimited n		
Methyl	Unlimited miscibility	Benzyl benzoate	10
Ethyl	Unlimited miscibility	Butyl phthalate	8
Cyclohexyl	4	Phenyl phthalate	Unlimited miscibility
Heptyl	6	Ethyl oxalate	Unlimited miscibility
2-Ethylhexyl	17	Butyl oxalate	1
Cinnamic	5	Ethyl maleate	Unlimited miscibility
Furfuryl	4	Methyl salicylate	Unlimited miscibility
Phenylmethyl	8	Phenyl salicylate	9
Phenylethyl	3	Amides	
(Carboxylic acids		1
Formic	Unlimited miscibility	Acetonitrile	Unlimited miscibility
Acetic	Unlimited miscibility	Acrylonitrile	Unlimited miscibility
Caproic	Unlimited miscibility	Phenylacetonitrile	13
Caprylic	Unlimited miscibility	Formamide	0.5
Lactic	0.5	N,N-Dimethylacetamide	Unlimited miscibility
Lauric	1	N,N-Diethylacetamide	Unlimited miscibility
Oleic	2	Amines	
	Phenols	Pyridine Unlimited miscibility	
Phenol	3	Aniline	3
o-Chlorophenol	Unlimited miscibility	o-Toluidine	7
p-Chlorophenol	8	m-Toluidine	15
o-Cresol	2	o-Chloroaniline	5
m-Cresol	4	m-Chloroaniline	1
p-Cresol	2	Diphenylamine	1
	Esters	N,N-Dimethylaniline	Unlimited miscibility
Ethyl acetate	Unlimited miscibility	N,N-Diethylaniline	17
Ethyl acetoacetate	Unlimited miscibility		

Solubility of compounds decreases with molecular weight.

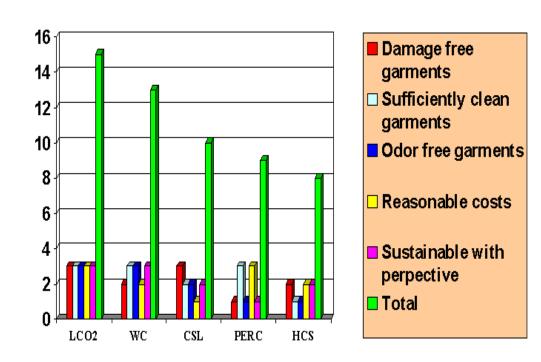
Water and surfactants: micelles /


foam

CO₂ Cleaning: solvent mechanism. Small molecules dissolved, heavy molecules are partly dissolved, partly "immobilized".

CO₂ process

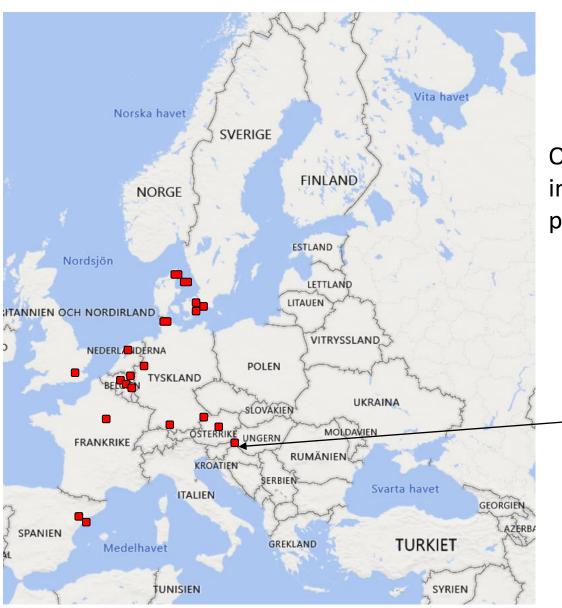
Distillation and cleaning in parallell: saves time \rightarrow short process cycle:


1 bath process:27 min

2 resp 3 bath:34 / 41 min

Loss of CO₂ per process: 2 kg

Dry Cleaning of garments


Source: Report from Life project Detective – an EU sponsored project

Benefits:

- No smell
- No hazardous solvent
- Very gentle cleaning
- Ability to clean items not suitable for other DC
- No risk for ground contamination from solvent
- 10 yr track excellent tech record DC with various prizes

Current CO₂ machines in Europe

Over 20 machines in operation in Europe, plus 3 in USA, AUS, NZ

Pioneer CO2DEX

Machine Features

The SiOx machine is delivered as a single unit.

The only installation work needed:

Connect machine to:

- Power
- External vessel for CO₂
- Pressurized air
- Cooling water
- Venting pipe

Cleaning of Protective work wear

Removal of hazardous compounds on firemens gear

- Reduces level of PAHs, VOCs and oil on the garment more efficient than any other method
- Does not affect the protection ability of the garment (membrane)

Combination with water wash for two good reasons: polar contaminations, costs

CODEX Technologies d.o.o. is a company specialized in advanced solutions and services in its industry. We operate mainly in Slovenia with almost all PFB, many VFB and have also export activities in Germany, Austria, Hungary etc.

Our mission is to leverage innovative technologies and expert knowledge to provide our clients with solutions that drive efficiency, sustainability, and growth.

- Customer-Centric Focus
- Innovation and Excellence
- Sustainability and Responsibility
- Quality and Integrity
- Global Impact

- Technology and Expertise
- Collaboration and Growth
- Excellence in Service
- Innovation for Tomorrow

Collaboration

- End users firefighters
- Responsible persons in the firefighting organization
- Manufacturers of cleaning equipment and technology
- Manufacturers of cleaning agents
- Manufacturers of protective equipment
- Manufacturers of component parts of protective equipment
- Institutions responsible for supervising the implementation of measures in the field of H&S for firefighters.

Lejon Kemi

History

CODEX TECHNOLOGIES

Sir Percivall Pott, chimney sweeps and cancer

- Over 200 years ago, doctor and writer Sir Percivall Pott (1714-1788) made the connection between **soot and scrotal cancer**, known then as the chimney sweep's cancer
- Chimney Sweep's Carcinoma, also known as soot wart, was the first occupational cancer to be described

Prevention of Exposure

Reasons for PPE maintenance

LEGAL FRAMEWORK

- Directive 2004/37/EC carcinogens or mutagens at work Article 10 Hygiene and individual protection
- ISO 23616 Cleaning, inspection and repair of firefighters' personal protective equipment (PPE)
- CEN/TR 14560:2018
- Local legislation on Health&Safety (general and firefighting)

MANUFACTURER'S INSTRUCTIONS

- Clean and inspect for any damage after every use.
- Damaged PPE must be repaired before use.

PROTECTION

Any damage reduces the protective effect of PPE.

HEALTH ASPECT

INTERVENTION ACTIVITIES

- Exposure to toxic substances
- Mechanical action
- Wear out

AFTER INTERVENTION

- Contamination
- Various damages

EN

- Destroyed equipment

PREPARATIONS FOR NEXT INTERVENTION

- Decontamination
- Disinfection
- Cleaning
- Inspection
- Repairs
- Regular maintenance
- Replacement

Additional CARE challenge

- We deal exclusively with used equipment (new equipment is usually not cleaned, except during material testing)
- The complexity of individual pieces of equipment (many standards)
- Many different materials combined in one product

CLEANING METHODS

Decontamination with LCO₂
Wet washing (incl. disinfection and decontamination)
Reimpregnation

Decontamination in PPE washer

Decontamination efficiency

CODEX Technologies cleaning technology

Step 1:

Pre-washing with detergents and water at different 40/60 °C regime depending on manufacturers instructions and state of preservation of the PPE.

Step 2:

LCO₂ extraction technology, due to its properties, penetrates through all pores and layers.

Residue after 40/60 °C wet washing.

Decontamination efficiency

Proof of Decontamination efficiency

Proving the decontamination efficiency with laboratory tests

Sample data:

Order code: Sample description: LCO2 Decontaminated membrane LCO2 Decontaminated membrane

Time of sampling:

Delivery Details: Sample meets acceptance criteria

Sample acquisition date: Report date:

28.01.2022

21.02.2022

Laboratory identification number:

Lab.No.: 2022 - 0132

Analysis:

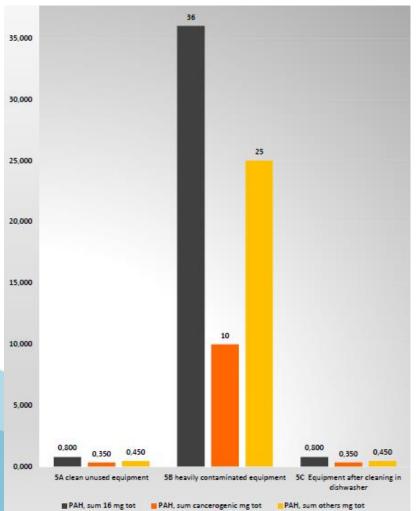
MESUREMENTS:

Parameter	unit	result	method	start / end analysis
PAH-polycyclic aromatic hydrocarbons; sum of 16 PAH	mg/kg d.m.	8,17 #	calculation	28.01.2022 21.02.2022
Benzo(a)pyrene	mg/kg d.m.	0,31	SIST EN 15527:2009	28.01.2022 21.02.2022
Benzo(b)fluoranthene	mg/kg d.m.	0,47	SIST EN 15527:2009	28.01.2022 21.02.2022
Benzo(g,h,i)perylene	mg/kg d.m.	0,41	SIST EN 15527:2009	28.01.2022 21.02.2022
Benzo(k)floranten	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
Fluoranten	mg/kg d.m.	0,74	SIST EN 15527:2009	28.01.2022 21.02.2022
ndeo(1,2,3,c,d)piren	mg/kg d.m.	0,37	SIST EN 15527:2009	28.01.2022 21.02.2022
Vaftalen	mg/kg d.m.	0,86	SIST EN 15527:2009	28.01.2022 21.02.2022
PAO- Dibenzo(a,h)antracen	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Fluorene	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Acennapthene	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Acenaphthylene	mg/kg d.m.	1,22	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Anthracene	mg/kg d.m.	0,48	SIST EN 15527:2009	28.01.2022 21.02.2022

Testorganism:	Enterd	ococcus faecium		Serialnumber: 195676
Process informati	on			
Testdate	:	14-09-2020		
Machine	:	PPE		
Formula	:	03		
10 ³		10 ⁴	10 ⁵	10 ⁶
\checkmark				\square
DEGREE OF REDI	JCTION:	10 ⁶		
DEGREE OF RED				

LCO₂ and wet washing

It is important to estimate when LCO₂ decontamination, wet washing and reimpregnation are required due to safety and health requirements.



PPE Washer

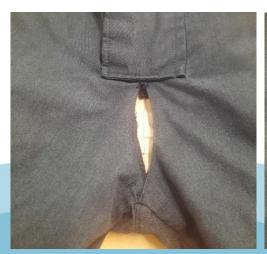
Decontamination of helmets and BA sets

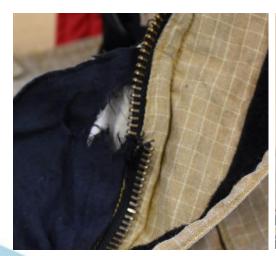
Report: Analysis of substances which are harmful to health and carcinogens (PAH) on sooty breathing apparatus before and after pretreatment and washing in a PPE washer

REPORT ALS: T 1822525. I.L 2. Dat. 2018-10-03

Inspection of PPE

- Damaged PPE may endanger the safety of the user
- Physical injuries such as cuts, burns, etc.




Repairs

- Authorized repair service of several major producers of firefighting protective equipment
- Use of the original materials supplied by producers, as required by producers and EN standards

Thank you for your attention!

info@co2dex.com

+386 40 545 507

@CO2DEX

https://co2dex.com/

Ljubljana Airport, Fraport Aviation Academy