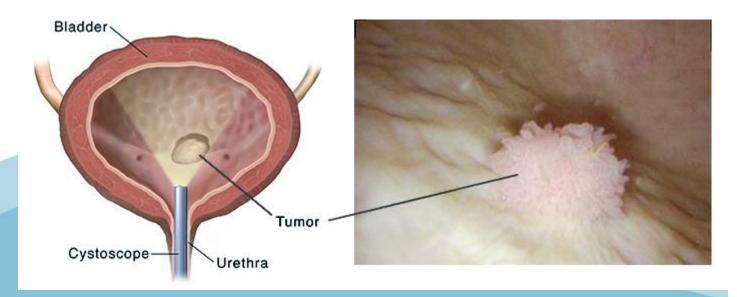


CARE CONCEPT OF THE FIREFIGHTER'S PPE

Description of the Challenge The CARE Cycle Codex Technologies' Care Concept

Gorazd Štebe, Technology developer

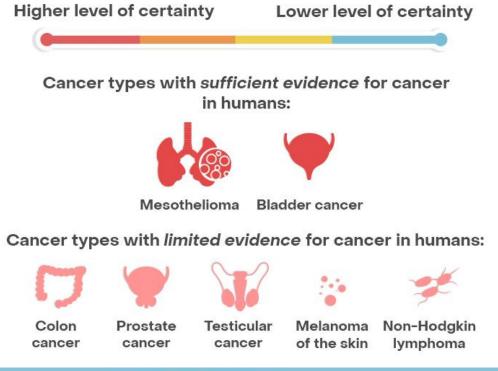
History Sir Percivall Pott, chimney sweeps and cancer



- Over 200 years ago, doctor and writer Sir Percivall Pott (1714-1788) made the connection between **soot and scrotal cancer**, known then as the chimney sweep's cancer
- Chimney Sweep's Carcinoma, also known as soot wart, was the first occupational cancer to be described

Exposure of Firefighters Risk of cancer

- Publication of the International Agency for Research on Cancer (IARC) in 2022
- <u>Occupational exposure of a firefighter</u> <u>defined as carcinogenic to humans</u>



Occupational exposure as a firefighter is carcinogenic to humans (Group 1) on the basis of

sufficient evidence for cancer in humans

The IARC Monographs classification indicates the level of certainty that an agent can cause cancer (hazard identification)

Prevention of Exposure Reasons for PPE maintenance

• LEGAL FRAMEWORK

- Directive 2004/37/EC carcinogens or mutagens at work Article 10 Hygiene and individual protection
- ISO 23616 Cleaning, inspection and repair of firefighters' personal protective equipment (PPE)
- CEN/TR 14560:2018
- Local legislation on Health&Safety (general and firefighting)

MANUFACTURERS INSTRUCTIONS

- Clean and inspect for any damage after every use.
- Damaged PPE must be repaired before use.

PROTECTION

- Any damage reduces the protective effect of PPE.
- HEALTH ASPECT

INTERVENTION ACTIVITIES

- Exposure to toxic substances
- Mechanical action
- Wear out

AFTER INTERVENTION

- Contamination
- Various damages
- Destroyed equipment

PREPARATIONS FOR NEXT INTERVENTION

- Decontamination
- Disinfection - Cleaning
- Inspection

REACH

- RepairsRegular maintenance
- Replacement

Collaboration

prevent@deloza

Collaboration of all stakeholders

- End users firefighters
- Responsible persons in the firefighting organization
- Manufacturers of cleaning equipment and cleaning technology
- Manufacturers of cleaning agents
- Manufacturers of protective equipment
- Manufacturers of component parts of protective equipment
- Cooperation with relevant institutions responsible for supervising the implementation of measures in the field of H&S for firefighters.

Exposure of Firefighters

CODEX TECHNOLOGIES

Direct vs. Indirect contamination

Direct contamination

• Direct contact with the source of contamination

Indirect contamination

 A contaminated person or object makes contact with an uncontaminated person or object

Additional CARE challenge

- We deal exclusively with used equipment (new equipment is usually not cleaned, except during material testing)
- The complexity of individual pieces of equipment (many standards)
- Many different materials combined in one product

CLEANING METHODS

Decontamination with LCO₂

Wet washing (incl. disinfection and decontamination)

Reimpregnation

Decontamination in PPE washer

Decontamination efficiency Codex Technologies cleaning technology

Step 1: Pre-washing with detergents and water

Step 2: LCO₂ extraction technology, due to its properties, penetrates through all pores and layers. **Residue after 40/60** °C wet washing.

Decontamination efficiency Proof of Decontamination efficiency

• Proving the decontamination efficiency with laboratory tests

Sample data:	
Order code:	LCO2 Decontaminated membrane
Sample description:	LCO2 Decontaminated membrane
Time of sampling:	1
Delivery Details:	Sample meets acceptance criteria
Sample acquisition date:	28.01.2022
Report date:	21.02.2022

Lab.No.: 2022 - 0132

Laboratory identification number:

Analysis:

MESUREMENTS:

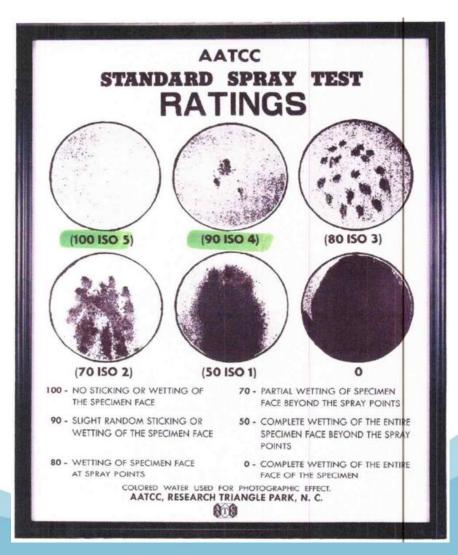
Parameter	unit	result	method	start / end analysis
PAH-polycyclic aromatic hydrocarbons; sum of 16 PAH	mg/kg d.m.	8,17 #	calculation	28.01.2022 21.02.2022
Benzo(a)pyrene	mg/kg d.m.	0,31	SIST EN 15527:2009	28.01.2022
Benzo(b)fluoranthene	mg/kg d.m.	0,47	SIST EN 15527:2009	28.01.2022 21.02.2022
Benzo(g,h,i)perylene	mg/kg d.m.	0,41	SIST EN 15527:2009	28.01.2022 21.02.2022
Benzo(k)floranten	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
Fluoranten	mg/kg d.m.	0,74	SIST EN 15527:2009	28.01.2022 21.02.2022
Indeo(1,2,3,c,d)piren	mg/kg d.m.	0,37	SIST EN 15527:2009	28.01.2022 21.02.2022
Vaftalen	mg/kg d.m.	0,86	SIST EN 15527:2009	28.01.2022 21.02.2022
PAO- Dibenzo(a,h)antracen	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Fluorene	mg/kg d.m,	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Acennapthene	mg/kg d.m.	<0,35	SIST EN 15527:2009	28.01.2022 21.02.2022
AH-Acenaphthylene	mg/kg d.m.	1,22	SIST EN 15527:2009	28.01.2022 21.02.2022
PAH-Anthracene	mg/kg d.m.	0,48	SIST EN 15527:2009	28.01.2022 21.02.2022

RESULTS DES-infection CONTROLLER KT4-6					
Testorganism :	Enterococcus faecium	Se	erialnumber: 195676		
Process information					
Testdate	: 14-09-2020				
Machine	: PPE				
Formula	: 03				
RESULTS FOR EACH	STARTVALUE [cfu/cm ²]				
10 ³	10 ⁴	10 ⁵	10 ⁶		
\checkmark		V	\checkmark		
DEGREE OF REDUCT	ION: 10 ⁶	•	•		
Remarks:					

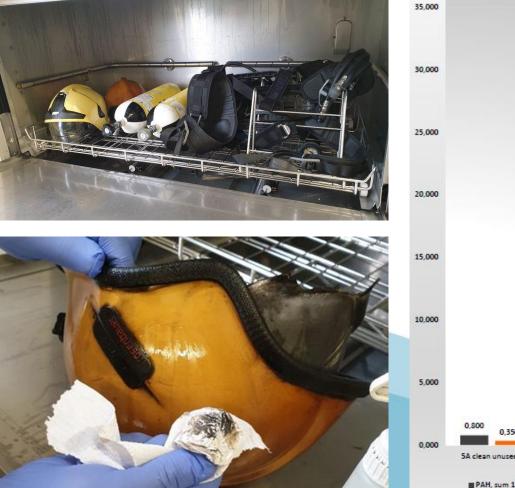
LCO₂ and wet washing

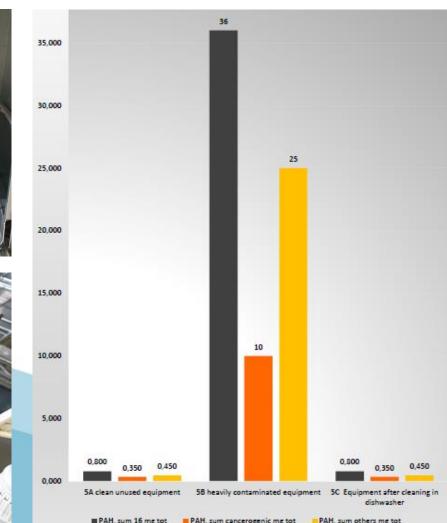
It is important to estimate when LCO₂ decontamination, wet washing and reimpregnation are required due to safety and health requirements.

Impregnation Waterproof is not the same as water repellent


- Impregnation provides protection against water, oils/fats and chemicals
- The impregnation can be damaged due to various factors or rinses

6.2.2 Resistance to Penetration test by liquid chemicals


Three specimens in the machine direction and three in the cross direction of the component assembly or garment assembly shall be tested in accordance with EN ISO 6530 after pre-treatment as in accordance with 5.3 using a chemical application time of 10 s using the following liquid chemicals.


Table 4 — Chemical penetration testing

Chemical Mass (%)		Temperature of chemical ± 2 °C	
H ₂ SO ₄	30	20	
C ₈ H ₁₀ (o-xylene)	100	20	

PPE Washer Decontamination of helmets and RPD sets

CODEX TECHNOLOGIES

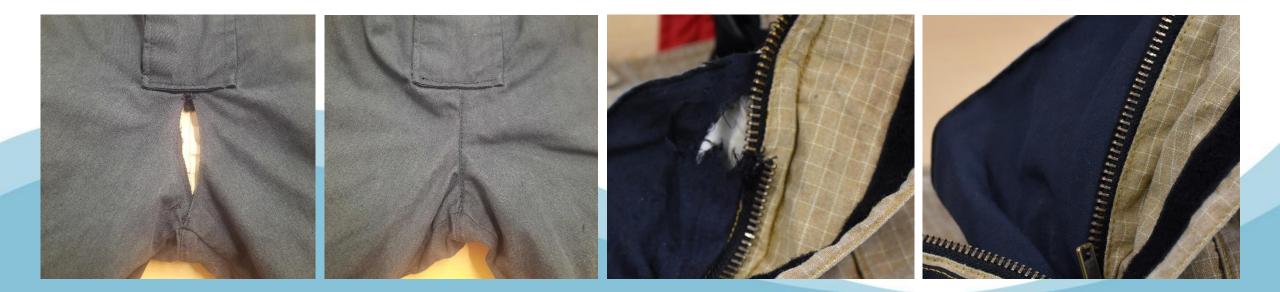
Report: Analysis of substances which are harmful to health and carcinogens (PAH) on sooty breathing apparatus before and after pre-treatment and washing in a PPE washer

REPORT ALS: T 1822525. I.L 2. Dat. 2018-10-03

Inspection of PPE

- Routine and advanced inspection of the PPE is essential to ensure the expected level of protection
- Any damage to the PPE reduces its reliability
- PPE must be inspected after each/before any further use
- The inspection can be carried out by the PPE manufacturer or by a qualified and authorized person or organization
- It is important to understand the equipment as a whole and all its components
- A planned action plan based on the results of the inspection

Inspection of PPE


- Damaged PPE may endanger the safety of the user
- Physical injuries such as cuts, burns, etc.

- Authorized repair service of several major producers of firefighting protective equipment
- Use of the original materials supplied by producers, as required by producers and EN standards

Thank you for your attention!

